Stochastic predetermination of bioproductivity component by the growth features of winter wheat upper leaf blades

Anhelina Dubytska
PhD in Agricultural Sciences, Leading Researcher
Institute of Agriculture of the Carpathian Region of the National Academy of Sciences
81115, 5 Hrushevskyi Str., Obroshyne Village, Ukraine
https://orcid.org/0000-0002-5685-0237

Oksana Kachmar*
PhD in Agricultural Sciences, Senior Researcher
Institute of Agriculture of the Carpathian Region of the National Academy of Sciences
81115, 5 Hrushevskyi Str., Obroshyne Village, Ukraine
https://orcid.org/0000-00020382-6030

Oleksandr Dubytskyi
PhD in Biological Sciences, Senior Researcher
Institute of Agriculture of the Carpathian Region of the National Academy of Sciences
81115, 5 Hrushevskyi Str., Obroshyne Village, Ukraine
https://orcid.org/0000-0002-8293-4119

Oksana Vavrynovych
PhD in Agricultural Sciences, Senior Researcher
Institute of Agriculture of the Carpathian Region of the National Academy of Sciences
81115, 5 Hrushevskyi Str., Obroshyne Village, Ukraine
https://orcid.org/0000-0003-3466-1432

Zynoviy Kotyk
PhD in Technical Sciences, Associate Professor of the Department
Lviv Polytechnic National University
79013, 12 Bandery Str., Lviv, Ukraine
https://orcid.org/0000-0002-7725-0791

Abstract. The relative and absolute importance of a number of traits, in particular, agrophysiological, morpho-functional, at the level of individual organs and parts of an integral plant, and/or sowing for the development of features of biological traits, and other agroecologically significant components of the crop production process, has been discussed in research papers for a long time. The purpose of the study was to search for agroecologically significant signs of growth of the upper leaf blades (ULB), which can empirically and potentially determine the development of the grain.

Suggested Citation:
dry mass (GDM) of winter wheat under “model” conditions of biological agrotechnical influences designated as biological fertiliser systems. Methods used in the research: methodological approaches of field experiments, gravimetric, convective drying, and stochastic methods. The development of GDM was largely driven by potentially scalable integral growth traits of ULB – leaf area duration, biomass duration (LAD, BMD, respectively) or their combinations with potentially non-scalable features of the average growth rate ULB – net assimilation rate, relative growth rate (NAR, ULB, RGR, ULB, respectively). It is also highly probable that LAD may play a central role in the development of RGR or BMD (but not NAR). The coordination of RGR with NAR was not excluded, although it was overly complicated. The construction of such and similar studies in the line of an exhaustive explanation of consistent systemic and mechanistic predeterminations of the production process with signs of ULB growth under various agrotechnical and biological influences will improve discursive and mathematical simulation constructs that can characterise and integrate the differential effects of plant components on photosynthesis of leaf cover, crown, and ultimately on the processes of development of components of the final biological and economic yield of winter wheat.

Keywords: signs or features of growth of upper leaf blades; leaf area and biomass durations; net assimilation and relative growth rates; winter wheat; “model” biologically improved agronomic conditions – biologically improved fertilisation systems

INTRODUCTION

To improve the final results of the production process, among the world’s theoretical and applied aspects of biological, agronomic, and related sciences, various alternative ways to control and increase the efficiency of photosynthesis of agricultural leaves were proposed. The lack of proper success up to the day is mainly conditioned by the fact that the biological and economic productivity of agricultural plants is largely determined by photosynthetic capacity indices (PI) and related terms (size, duration, and architecture of green leaf cover, amount of captured radiation, RUE – radiation use efficiency of the crown, distribution of photosimilates, size sinks strengths in the source-sink system of plants). PI of green organs and related terms are capable of being translated into growth indices (GI) and bioproductivity of plants. However, during the grain production of cereals, only two upper leaves produce more than 80% of the photosimilates of the entire plant. Therefore, it is important to formulate scientific questions in the areas of clarifying the measure and methods of determining the components of bioproductivity by the GI of individual upper leaf blades (ULB) of winter wheat, developing a deeper understanding of the (mutual) subordination between the first and second in the “scaling down” coordinates under various agrotechnical influences. The results of such studies will become a meaningful basis for correcting theoretical, applied, and generalising constructs for the development of the “scaling up” yield components under various technologies for growing winter wheat.

Consistent with the classical analysis of plant growth outlined several decades ago, total dry matter (TDM) is directly proportional to the product of GI – net assimilation rate (NAR), leaf area duration (LAD); at the same time, crop growth rate (CGR) is directly proportional to the product of NAR, leaf area index (LAI) (theoretical and analytical equations (Eqs.) – TAE category 1 for plant growth analysis). It is also legitimate to predetermine TDM by the product of two other GI – relative growth rate (RGR), biomass duration (BMD), and the coordination of CGR with the product of RGR, biomass index (BMI) (TAE category 2). Modern definitions and formalisations of NAR and CGR are given by A. Khan et al. (2023); for LAI, LAD – by N. Mehboob et al. (2022); BMD, BMI in TAE category 2 – biomass-GI, similar to LAD, LAI.

Formalisation of the RGR, submitted by M. Tripathi (2020), can be supplemented by considerations of F.F.M. Oliveira et al. (2019), and interpreted as the rate at which a given amount of existing biomass can produce new biomass. Since RGR is the key to analytical understanding of growth, it is often presented as a product of NAR, LAR (LAR – product of LMF, SLA, or 1/LMA) (Yano et al., 2018). In this TAE category 3 LAR, LMF, SLA, LMA – leaf area ratio, leaf mass fraction, specific leaf area, leaf mass per area ratio (specific leaf weight, SLW). In consistency with S. Tripathi et al. (2018), the latter TAE is important for intra- and interspecific variability of plant growth rates depending on environmental factors, availability of sources of alimentary reserves. As noted by M. Khirkhah et al. (2019), crop bioproductivity of GI components may be affected by insufficient or excessive intake of any of the main alimentary components.

I.C. Dodd and E.D. Elphinstone (2021) showed that N-supplements caused an increase in LAI, leaf longevity (LL), LAD, leading to an improvement in plant biological and/or economic productivity. Ukrainian researchers D.A. Kirizi and I.M. Shehedea (2019) proposed predicting the ability to photosynthesise (individual plants, seeding) by LNC (Area), LDMC (Area) (N-leaf content/area, leaf dry matter content/area, respectively), SLW, which characterise interspecific differences in N-allocation to proteins (Rubisco), cell walls, mesophyll conductivity, CO2 partial pressure (leaf structure), etc. An increase in
N-concentration caused a decrease in LMF, RGR *Hordeum vulgare* L. (hydroponics); at higher N-concentration, the increase in LMF was offset by a decrease in NAR, without changes in SLA (Ge et al. 2019). M. Khirkhah et al. (2019) found that max-gain LAI, CGR, NAR, RGR of alfalfa (a two-year field experiment) was induced by P-biofertilisers + extracellular boron-supplements, extracellular or "intra-soil" manganese-supplements.

According to H. Tiwari et al. (2023), highest CGR, NAR, RGR *Triticum aestivum* L. 100%-recommended N-rate+farmyard manure + "Azatobacter" (biofertiliser) (comparison with other integrated crop cultivation systems) were determined. J.L. Miglioli et al. (2020) demonstrated that a decrease in RGR, NAR, an increase in DM of *Brassica oleracea* var. *gemmifera* was caused by treatment with 6-benzylaminopurine, while the opposite changes were caused by dopamine. An increase in LAI, NAR, %-light interception in rice was caused by the use of green manure crops with different N-dosage or N$_N$-only (Islam et al. 2019). L.S. Yeremko et al. (2019) showed that an increase in the rate of mineral fertilisers (using plant root feeding) caused an increase in photosynthetic potential = LAD, net photosynthesis productivity of pea crops, both without inoculation with Rhizohumin, and with inoculation, compared with control (without fertilisers, without inoculation) or non-inoculated plants, respectively.

The analysed scientific sources show that the study of aspects of GI coordination, components of bioproductivity, functional and ecological relations is expedient in hydroponics, agricultural systems of plant cultivation, and supplementation of the latter with biological factors. Thus, the biologised fertiliser systems used in this work (BFS, complex agrotechnical and biological fertilisers) can be a full-fledged model agroecosystem for elucidating the patterns of (inter-) subordination between the indicators of bioproductivity and growth of winter wheat. Over the past decade, a wide range of researchers have formed a consensus, highlighted in particular by J.L. Araus et al. (2021), according to which it is advisable to consider the most significant factors of increasing bio-productivity and economic grain yield in conjunction with changes in growth and development processes in the source-sink system of plants. However, there are no clear answers to questions about the aspects of predetermined results of the production process (the final sink) by the ULB-GI, i.e., by the important attributes of growth and primary sources of photosynthesis, which characterise the accumulation, preservation, and outflow of assimilates from the ULB to sinks in terms of “scaling down”.

The structure of such considerations should be supplemented by the predestination of the RGR$_{ULB}$ by the product of NAR$_{ULB}$ = SLA$_{ULB}$ (TAE category 4), similar to T. Inoue et al. (2022). The latter suggests the existence of growth-TAE that regulate TDM$_{ULB}$ coordination on the one hand, and NAR$_{ULB}$, LAD$_{ULB}$, RGR$_{ULB}$ and/or BMD$_{ULB}$ (TAE categories 1, 2); RGR$_{ULB}$ can be stochastically determined by NAR$_{ULB}$ (TAE category 4) is logical. Given the importance of LAD for the development of NAR (TAE category 1), the subordination of NAR to the value of RGR (TAE category 3), the need for BMD for RGR (TAE category 2), and the scientific sources cited above, the authors of this paper suggested that within the framework of this experiment, NAR$_{ULB}$, RGR$_{ULB}$, BMD$_{ULB}$ can be predefined by LAD$_{ULB}$.

Research objective: to establish whether NAR$_{ULB}$, LAD$_{ULB}$, RGR$_{ULB}$, BMD$_{ULB}$, empirically and statistically determine, and how exactly, the development of GDM of winter wheat under the conditions of biologised fertilisation systems (BFS); to find out functionally and ecologically feasible stochastic subordination between the described signs of ULB growth.

MATERIALS AND METHODS

The study was carried out in 2017-2018 on grey forest gleyed light loamy soil in the conditions of a stationary experiment to investigate the scientific foundations of productivity management of short-rotation crop rotations in the Carpathian region (Institute of Agriculture of the Carpathian region of the National Academy of Agrarian Sciences of Ukraine). Plants of winter wheat (*Triticum aestivum* L.) of the Benefis variety (predecessor – peas, *Pisum sativum* L.) were used for the research within a 4-field crop rotation with the following crop rotation: oats, corn (for grain), peas, winter wheat. The area of the experimental microplot was 1 m2; replication of plots was 3-fold; the arrangement of the plots – systemic. Physical and agrochemical parameters of the soil (substrate thickness 0-30 cm) were tested in 2016 before the field stationary experiment. For the sake of space, the authors of this paper consider it appropriate to mention that the values of the measured soil characteristics were presented in the previous paper. The content of research variants (technologies) for groups 1 and 2 is presented in Table 1.

Table 1. Content of research variants (Group 1 and 2 technologies)

<table>
<thead>
<tr>
<th>DRV(T)</th>
<th>Content of option (Group 1)</th>
<th>DRV(T)</th>
<th>Content of option (Group 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.0</td>
<td>Control (no fertilisers or biologisation factors)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>PSS1</td>
<td>2.1</td>
<td>MF(FD)7</td>
</tr>
<tr>
<td>1.2</td>
<td>PSS1 + MF(HD)2</td>
<td>2.2</td>
<td>MF(FD)7 + BS(TS)8</td>
</tr>
</tbody>
</table>

Scientific Horizons, 2024, Vol. 27, No. 5
Brief characteristics and methods of application of biologisation factors represented by commercial preparations (indices 1–6) in Table 1 were contained in the previous paper already cited above (Dubytskyi et al., 2020). Supplements PSS, CM(AE) (see note to the same table) represented non-commercial agricultural biologisation factors. N, P, K were added to the soil in the form of ammonium nitrate (54% of the active substance), superphosphate (18% of the active substance), and potassium salt (40% of the active substance), respectively, in doses of 30, 45, 45, or 60, 90, 90 kg/ha\(^{-1}\) (variants of Group 1 or Group 2 – MF(HD) or MF(FD), respectively), immediately after sowing winter wheat; PSS was applied for autumn ploughing (2.2 t/ha\(^{-1}\)), CM – for autumn ploughing (2.2 t/ha\(^{-1}\)) before spring corn sowing.

Fluctuations in typical climate characteristics during the growing seasons of 2016-2017 and 2017-2018 had a number of features. Among other things, the beginning of this interval of winter wheat growth in 2016 was marked by an oversaturation of precipitation and relatively low average ten-day temperatures; however, overwintering of plants was satisfactory. During the tubing–earing phase of 2017, weather conditions were acceptable. During the flowering-waxy ripeness period, there was a partial lack of moisture in the soil, and an increase in air temperatures by 1.0-1.9°C above the long-term average norms (LAN). In the interval of the initial stages of winter wheat ontogenesis in 2017-2018, the distributions of the sums of active temperatures and precipitation were uniform. During the 3rd-4th months of the specified interval of years, there was a lack of precipitation (95 mm against 52.7 LAN) and an increased temperature background. During the tubing-earing period of 2018, excessive soil moisture occurred. On the contrary, during flowering – waxy ripeness that year, there was a partial lack of moisture and an increase in air temperatures by 3.8°C, compared with the LAN. Summarising the properties of the climatic background of winter wheat vegetation during 2017-2018, it was clear that the ontogenesis of these plants, taking place against the background of changes in precipitation intensity and temperature, still typically contributed to the optimal growth of this crop.

The upper leaf blades (ULB; one the flag FLB and one the pre-flag PFLB – 1\(^{st}\) and 2\(^{nd}\) leaves of the upper tiers, respectively) from productive shoots of winter wheat were selected in the range of 8.00-11.30 h until noon under the conditions of the onset of the ontogenesis phases of tubing, earing, flowering, milk ripeness (T, E, F, MR, respectively; ~75% of plants in the proper phase), as previously noted (Dubytskyi et al., 2020). ULB was separated from 3 productive shoots in one field repetition (diagonally across the field plot) and on 3 field repetitions (total number n FLB + PFLB = 18). These operations were performed using scissors, ULB was placed in labelled open moistened plastic ice bags, which were placed in a moistened plastic ice container, and transported to the laboratory in this form. In the laboratory, the leaves were rinsed with tap water, dried with filter paper, and the length and maximum width of each ULB was measured using a ruler (in such a sequence as the leaves were placed in a plastic bag – important for subsequent calculations).

2 discs were cut out of each ULB using a cork drill, placed in glass buckets and fixed in a drying cabinet 2B-151 (USSR) at 105°C. During the next 2 days, the leaf discs were dried in a drying cabinet at 105°C to a constant mass (~8-14 hours) to determine the dry mass of ULB (Dubytskyi et al., 2020). The dry matter mass of ULB disks was measured on Radwag AS 220/R2 analytical scales, Poland (±0.0001 g). Specific leaf weight (SLW) = leaf disc weight/leaf disc area; found the average for each research variant \(i\) = SLW\(_{avg}\). The area of ULB was calculated from the ratio represented by K. Liu et al., (2019): \(A_{opt} = 0.75·LBL·LBW·10^{-2}\), where \(LBL, LBW, 10^{-2}\) – leaf blade length, leaf blade width, conversion factor mm\(^{2}\) in cm\(^{2}\). Mass of dry matter of \(i\)-th leaf blades found as a product of SLW\(_{avg}\) and LA_{i,j}:

\[
LDM_{i,j} = LA_{i,j} · SLW_{avg}\]
With the onset of the full grain ripeness phase (for ~75% of plants), wheat ears were cut from every 3 productive shoots in one field repetition (diagonally), and on 3 field repetitions \((n = 18)\), and were transported to the laboratory in “dry” form. Grain from the ears was ground, the grain dry mass \((GDM)\) was determined from the grinding part in the same way as described for upper leave blades. The values of this attribute were recalculated on grain dry weight per plant \((GDM_{\text{mg}}, \text{g plant}^{-1})\). The bio-productivity of winter wheat was estimated as GDM based on the area under cultivation \((g/m^2)\) or mg in kg \((10^{-3})\), S – see previous Eqs. Calculating average \(n = 18\) \((\text{LAD}_{\text{ULB}_{\text{i}}} \text{BMD}_{\text{ULB}_{\text{i}}})\) \(\text{m}^2/\text{day}, \text{kg/m}^2\) day) is similar to Eqs. (6), (7).

Average values of each trait \(T\) for the \(i\)-th pair of ULB \((T \sim \text{M})\) between 2017-2018:

\[T_{\text{ULB}_{(i)}} = 1/2 \cdot (T_{\text{ULB}_{(i)}2017} + T_{\text{ULB}_{(i)}2018}) , \]

where \(T_{\text{ULB}_{(i)}}\) is similar to Eq. (7).

Statistical reliability \(\alpha\) of differences between numerical quantities of the data in groups (combinations) of research variants (technologies) C.0-2.6, 1.1-6.0, 2.1-6.2 were analysed using univariate analysis of variance (Libre Office Calc Version 5), while \(t\)-statistics was used for pairwise comparison (similar to O. Stasiv et al. (2023)); the last of these parameters was calculated as previously indicated by S. Brown et al. (2020) (the software mentioned above). 2D and part-relation coefficients \((tr, pr\), respectively), their \(\alpha\) was found in the Statistica Version 10 package (StatSoft Inc). Standard stochastic OLS-dependencies (OLD; spatial data) were constructed and generated in the GNU Regression, Econometrics, and Time-Series Library (the GNU Unix operating system) (all the last specified statistical procedures were previously described by O. Stasiv et al. 2023)). The analytical achievement indicators and the autocorrelation (denoted as AC) were tested in the same way as in the previous paper (Stasiv et al., 2023). Eqs. for evaluating \(D\)-criterion and the concept of weighing the presence or absence of AC were drawn from P. Das (2019).

RESULTS

The study demonstrated that field technologies 1.1-2.6 caused a statistically significant increase in GDM of winter wheat by 31.7-298.6%, compared with C.0 (Fig. 1). Under the conditions of pre-existing technologies 1.2-1.6, 2.2-2.6, this trait of biological productivity of plants increased by 10.0-94.7%, compared to 1.1, 2.1.
Highly significant decline in NAR_{ULB}, RGR_{ULB} 42.1-61.0% was observed in winter wheat on research variants 1.1, 1.2 with typical comparisons with C.0 (Fig. 2). Simultaneously, there was a decrease in these indices of ULB plant growth rate in the case of field technologies 1.5-2.6 by 45.1-125.6% (vs. C.0). In winter wheat under 1.4 conditions, a significant decrease in RGR_{ULB} by 40.3% was observed and, at the same time, only downward trends in NAR_{ULB} (-36.6%, $\alpha < 0.1$), in the case of comparison with C.0. There were no statistically significant changes in NAR_{ULB}, RGR_{ULB} in plants under 1.3 conditions ($\alpha > 0.1$, matching with C.0). However, in 1.3 there was an increase in NAR_{ULB}, RGR_{ULB} of winter wheat by 65.8-103.1% compared to 1.1; in plants under 1.2, 1.4 there was only a tendency to increase NAR_{ULB} by 43.8-62.5%, and no statistically valid changes in RGR_{ULB} when compared to 1.1. Similarly, there were no statistically reliable changes in the ULB growth rate indices of winter wheat under the conditions of research technologies 1.5, 1.6 (vs. 1.1). In the case of field technologies 2.2, 2.3, 2.5, 2.6, a significant decrease in NAR_{ULB}, RGR_{ULB} plants by 75.0-187.5% was noted, while in conditions 2.4 – only a downward trend in NAR_{ULB} (-120.8, $\alpha < 0.1$), and in addition – a decrease in RGR_{ULB} by 123.5% (all recent comparisons – from 2.1).

Figure 2. Average net assimilation rate NAR_{ULB} and relative growth rate RGR_{ULB} of the upper leave blades (flag leaves and pre-flag leaves) of winter wheat under the conditions of BFS (research variants using of the biologisation factors: 1.1 – 1.6, 2.2 – 2.6), MF(FD) (2.1) and without fertilisers and biologisation factors (C.0) (tubing-milk ripeness, 2017-2018)

Note: Statistical validity of differences between features based on one-factor analysis of variance for C.0 – 2.6 $\alpha < 0.001$, for 1.1 – 1.6 – $\alpha = 0.069$, $\alpha = 0.080$, 2.1 – 2.6 – $\alpha < 0.001$; $\$, $\$ - reliability of differences from C.0, 1.1, 2.1 according to the T-criterion – $\alpha < 0.001-0.05$

Source: compiled by the authors
Briefly summarising the above-mentioned variations in the growth rate of winter wheat ULB alone, it is clear that all fertilisation systems (field technologies 1.1-2.6) caused a decrease in NAR_{ULB}, RGR_{ULB} of winter wheat during the evaluated phases of ontogenesis, compared with C.0. The nuance in this pattern is described under conditions 1.3, 1.4, respectively, or statistically unreliable changes in NAR_{ULB}, RGR_{ULB} plants, or just a tendency to decrease NAR_{ULB} fluenty with a relative decrease in RGR_{ULB} of these organisms (vs. C.0). The negative values of NAR_{ULB} and RGR_{ULB} for winter wheat presented here are not unique or incorrect (among other things, an artefact). S. Mohammadi Alagoz et al. (2023) reported, respectively, negative RGR, NAR values of triticale variety Giannillo-92 86-93 days after sowing under conditions of 3 levels of salinity and 4 levels of drought, in saffron (Crocus sativus), negative growth of leaves of macrophytes Vallisneria natans (depending on nitrogen load, fish abundance).

The combined effects in 1.1 – 2.6 caused a significant and statistically reliable increase in the integral growth indicators of ULB in winter wheat LAD_{ULB}, BMD_{ULB} by 9.1-233.5% (compared to C.0; Fig. 3). Similarly, in the case of 1.2-1.6, 2.2-2.6, these plant ULB growth indices increased by 12.9-133.3% compared to 1.1, 2.1.

![Figure 3](image_url)

Figure 3. Average leaf area duration LAD_{ULB}, biomass duration BMD_{ULB} of the upper leave blades (flag leaves and pre-flag leaves) for the actions of applied field technologies (1.1-1.6, 2.1-2.6), and under conditions without fertilisation and biologisation factors (C.0); tubing – milk ripeness, 2017-2018

Note: statistical reliability of differences between one-factor analysis of variance data for C.0 – 2.6, 1.1 – 1.6, 2.1 – 2.6 – α<0.001; \dagger, \dagger, \dagger – probability of differences from C.0, 1.1, 2.1 according to the t-criterion – α<0.001-0.05

Source: compiled by the authors

The tendencies to mostly statistically reliable decrements of NAR_{ULB}, RGR_{ULB} in conjunction with highly reliable increments LAD_{ULB}, BMD_{ULB}, indicate the opposite response of the Indicated categories of ULB growth signs of winter wheat to agrotechnical influences in the research technology groups both 1 and 2, compared with C.0. Significant increases in LAD_{ULB}, BMD_{ULB} of plants and much less statistically defined variations in their NAR_{ULB}, RGR_{ULB} in the case of 1.2-1.6, 2.2-2.6, create opportunities for identifying different responses of these two categories of ULB growth traits of these organisms to technologies of groups 1 and 2, also in comparison with 1.1, 2.1. Higher values and higher increments of LAD_{ULB}, BMD_{ULB} of winter wheat on 2.1-2.6, 2.2-2.6 (comparison with C.0, 2.1), than on 1.1-1.6, 1.2-2.6 (comparison with C.0, 1.1), at the same time lower values and larger decrements of NAR_{ULB}, RGR_{ULB} of plants on 2.1-2.6, 2.2-2.6 (comparison with C.0, 2.1), than on 1.1-1.6, 1.2-1.6 (comparison with C.0, 1.1) may indicate different sensitivity of the two categories of ULB growth traits of these organisms to experimental groups 1 or 2.

However, questions about the detailed reasons for these inventions are beyond the scope of this section and, in general, this study. Other important findings are that the patterns of variation of LAD_{ULB}, BMD_{ULB} but not NAR_{ULB}, RGR_{ULB} were, in general, similar to those for GDM. The presented statements highlight a certain intrigue around the subordination between the classical "interval" signs of ULB growth and the ecological and physiological features of the production process of winter wheat under the conditions of the studied agrotechnical influence (P.0, 1.1-1.6, 2.1-2.6). This provides quite natural grounds for elucidating the (mutually) predestination of GDM by the ULB growth traits presented here, and the (mutually) subordination of the latter to each other using typical tr analysis approaches. The comparisons of GDM with

Scientific Horizons, 2024, Vol. 27, No. 5
NAR_{ULB} or RGR_{ULB} revealed statistically significant negative correlations between them (Table 2). On the contrary, there are highly probable but positive \(tr\) between GDM and LAD_{ULB}, BMD_{ULB}. In this case, all empiric correspondences between independent variables (Vrb.; IV) for the discussed correlation matrix (NAR_{ULB}, LAD_{ULB}, RGR_{ULB}, BMD_{ULB}) were high in absolute value and statistically significant.

<table>
<thead>
<tr>
<th>Trait</th>
<th>M</th>
<th>N</th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N)</td>
<td>-0.8098*</td>
<td>-</td>
<td>-0.7121/</td>
<td>0.9955*</td>
</tr>
<tr>
<td>(L)</td>
<td>0.9726*</td>
<td>-0.7121/</td>
<td>-</td>
<td>-0.7608/</td>
</tr>
<tr>
<td>(R)</td>
<td>-0.8519*</td>
<td>0.9955*</td>
<td>-0.7608/</td>
<td>-</td>
</tr>
<tr>
<td>(B)</td>
<td>0.9503*</td>
<td>-0.6786/</td>
<td>0.9906*</td>
<td>-0.7297/</td>
</tr>
</tbody>
</table>

Note: \(N, L, R, B, M\) – NAR_{ULB}, RGR_{ULB}, LAD_{ULB}, BMD_{ULB}, GDM; *\(, f, i \sim \alpha < 0.001, \alpha < 0.01, \alpha < 0.05\), respectively
Source: developed by the authors based on O. Stasiv et al. (2023)

To better understand the internal configuration of interdependencies, the detection of collinearity (denoted as the MC) or statistical elimination (SE), an analysis \(pr\) was performed between considered Vrb. (Table 3) and comparison of this criterion with \(tr\), similarly to (Stasiv et al., 2023). Only 3 statistically reliable differences were found \(\left(\alpha < 0.001-0.05\right)\) for \(M-L, N-R, L-B\) (control Vrb., respectively, \(N, R, B; M, L, B; M, N, R\)).

<table>
<thead>
<tr>
<th>Index</th>
<th>M</th>
<th>N</th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N)</td>
<td>0.4049</td>
<td>-</td>
<td>-0.2346</td>
<td>0.9927*</td>
</tr>
<tr>
<td>(L)</td>
<td>0.7226/</td>
<td>-0.2346</td>
<td>-</td>
<td>0.2689</td>
</tr>
<tr>
<td>(R)</td>
<td>-0.4810</td>
<td>0.9927*</td>
<td>0.2689</td>
<td>-</td>
</tr>
<tr>
<td>(B)</td>
<td>-0.3966</td>
<td>0.2597</td>
<td>0.8955*</td>
<td>-0.2648</td>
</tr>
</tbody>
</table>

Note: \(N, L, R, B, M\) – NAR_{ULB}, RGR_{ULB}, LAD_{ULB}, BMD_{ULB}, GDM; \(pr\) for any 2 indexes are presented considering that the remaining 3 belong to the control Vrb.; *\(, f, i \sim \alpha < 0.001, \alpha < 0.05\), respectively
Source: developed by the authors based on O. Stasiv et al. (2023)

Comparative assessments of \(tr\), \(pr\) in Table 2 and Table 3 provided the following results: 1) between IV \(N, L, R, B\) there is an MC (by absolute values \(tr\) and comparison \(tr\) with \(pr\), according to A. Kalnins (2018) and P. Das (2019)); 2) SE of the Vrb. (Martinez Gutierrez & Cribbie, 2021) between the considered traits is absent. Nevertheless, the analysis of \(tr\), \(pr\) does not allow predicting how GDM can be determined by NAR and LAD_{ULB}, RGR_{ULB}, BMD_{ULB} separately or in combinations according to TAE categories 1, 2 in the “INTRODUCTION” section, and what is the probable form of consistency between RGR_{ULB} and NAR_{ULB} (TAE categories 3, 4; “INTRODUCTION” section) or NAR_{ULB}, RGR_{ULB}, BMD_{ULB} on the one hand and LAD_{ULB} – on the other hand (hypotheses of the authors of this paper). Within the outlined framework and considering TAE categories 1, 2, it is clear that log_{TDM} is an allometric function \(\log_{NAR} \text{and} \log_{LAD} , \log_{RGR} \text{and} \log_{BMD}. \text{However, log}_{GDM} \text{is not identical to log}_{TDM} \text{plants, nor log}_{DM} \text{of the ULB and therefore cannot be immediately represented in a list of terms containing log}_{NAR_{ULB}} \text{and} \log_{LAD_{ULB}} \text{or log}_{RGR_{ULB}} \text{and log}_{BMD_{ULB}}. (Since among the NAR_{ULB}, RGR_{ULB} if there are values less than 0, then instead of log_{N}, log_{R} in the future, the logarithms of the squares corresponding to Vrb. were used.)
2, 3, 4), or to the consistency of N, R, B with the L trait assumed by the authors of this paper, the obtained OLD were divided into 4 categories. This classification of OLD certainly differs from the one previously presented by O. Stasiv et al. (2023), but to a certain extent consistent with the principles of the conditional process analysis and, among other things, contains components of moderation and mediation of the Vrb. (Hayes & Rockwood, 2020; Ignatua & Hayes, 2021).

Category 1. 2-regressor polynomial predetermination \(\log M \) signs N, L (LE-function – (10A-1), (10b-1)), \(\log M \) by IV \(\log R^2, \log B \) (LG-function, or "logarithm dependence" of the LE – (11-1) type), and \(\log \left(M_a \cdot 10^R/M\right) = b_0 + b_1 + b_2 \cdot \log R + b_3 \cdot L \cdot L \) as a result of sequential exclusion of IV from the OLD type \(\log \left(M_a \cdot 10^R/M\right) = b_0 + b_1 + b_2 \cdot \log R + b_3 \cdot L + b_4 \cdot L \cdot L \) \(\sim \) (multinomial ML-function – (12-1)).

\[
\log M = 4.001 + 0.311 \cdot L - 0.010 \cdot L^2 - 0.030 \cdot N \cdot L
\]
\[\alpha < 0.01 \alpha < 0.01 \alpha < 0.01 \alpha < 0.01, \quad (10a-1)\]

\[
\log M = 4.272 - 0.282 \cdot N + 0.262 \cdot L - 0.008 \cdot L^2
\]
\[\alpha < 0.01 \alpha < 0.01 \alpha < 0.01 \alpha < 0.01, \quad (10b-1)\]

\[
\log M = 6.109 - 0.096 \cdot \log R^2 + 0.428 \cdot \log N - 0.007 \cdot \log R^3
\]
\[\alpha < 0.01 \alpha < 0.01 \alpha < 0.01 \alpha < 0.05, \quad (11-1)\]

\[
\log \left(6.15 \cdot 10^R/M\right) = 11.314 - 0.258 \cdot L + 0.162 \cdot R + 0.008 \cdot L^2
\]
\[\alpha < 0.01 \alpha < 0.01 \alpha < 0.01 \alpha < 0.05, \quad (12-1)\]

where \(\alpha < 0.1, \alpha < 0.05, \alpha < 0.01 \) under OLD – corresponding statistical reliability of OLD coefficients.\n
Category 2. Linear and power polynomial coordinates \(\log M \) separately from IV N, L, R, B (LE functions – (13A-2) – (16-2)).

\[
\log M = 6.216 - 1.070 \cdot N
\]
\[\alpha < 0.01 \alpha < 0.01, \quad (13a-2)\]

\[
\log M = 6.362 - 1.902 \cdot N - 7.231 \cdot N^2 + 30.586 \cdot N^3 - 26.084 \cdot N^4
\]
\[\alpha < 0.01 \alpha < 0.01 \alpha < 0.1 \alpha < 0.05 \alpha < 0.05, \quad (13b-2)\]

\[
\log M = 4.004 + 0.281 \cdot L - 0.008 \cdot L^2
\]
\[\alpha < 0.01 \alpha < 0.01 \alpha < 0.01 \alpha < 0.05, \quad (14-2)\]

\[
\log M = 6.234 + 0.587 \cdot R
\]
\[\alpha < 0.01 \alpha < 0.01, \quad (15a-2)\]

\[
\log M = 6.290 - 10.588 \cdot R^2 + 40.002 \cdot R^3 - 42.034 \cdot R^4 + 12.242 \cdot R^5
\]
\[\alpha < 0.01 \alpha < 0.05 \alpha < 0.1 \alpha < 0.1 \alpha < 0.1, \quad (15b-2)\]

\[
\log M = 4.134 + 5.271 \cdot B - 3.007 \cdot B^2
\]
\[\alpha < 0.01 \alpha < 0.01 \alpha < 0.01, \quad (16-2)\]

where \(\alpha < 0.1, \alpha < 0.05, \alpha < 0.01 \) under OLD – corresponding statistical reliability of OLD coefficients.\n
\[
\log_R \left(\frac{1.65}{R + 4 \cdot 10^R} \cdot \text{log}_N \right) = 17.765 + 0.357 \cdot \log_N \cdot N^2 + 0.210 \cdot \log \log_N \cdot N^2 + \frac{0.098 \cdot \log N}{0.049 \cdot \log \log N \cdot N^2}
\]
\[\alpha < 0.01 \alpha < 0.05, \quad (17-3)\]

where \(\alpha < 0.1, \alpha < 0.05, \alpha < 0.01 \) under OLD – corresponding statistical reliability of OLD coefficients.\n
Category 3. ML-predestination R by N.

\[
\log \left(\frac{1.65}{R + 4 \cdot 10^R} \cdot \text{log}_N \right) = 11.103 - 0.051 \cdot \log \log N
\]
\[\alpha < 0.01 \alpha < 0.01, \quad (18-4)\]

\[
\log \left(\frac{1.65}{R + 4 \cdot 10^R} \cdot \text{log}_N \right) = 17.590 - 0.002 \cdot L^3 + 0.332 \cdot 10^{-3} \cdot L^3 - 1.427 \cdot 10^{-5} \cdot L^3
\]
\[\alpha < 0.01 \alpha < 0.05 \alpha < 0.05 \alpha < 0.05, \quad (19-4)\]

\[
B = 0.105 + 0.648 \cdot 10^{-2} \cdot L - 0.024 \cdot 10^{-2} \cdot L^3 \n\]
\[\alpha < 0.01 \alpha < 0.01 \alpha < 0.01, \quad (20-4)\]

where \(\alpha < 0.1, \alpha < 0.05, \alpha < 0.01 \) under OLD – corresponding statistical reliability of OLD coefficients.\n
(Accompanying descriptions: 615, 1.65, -0.395 represent the theoretical (expected) maximum values of the criterion Vrb.; \(10^R, 10^L \) – a posteriori values for “fitting” OLD; \(M, N, L, R, B \) – GDM, NAR, LAD, LDR, RGR, BMD, respectively. Of course, the fact of suboptimal complexity for Eq. interpretations (21-3) is an additional reason and substantiation for the search for alternative predestinations N, R, B by L (OLD category 4). However, all the OLD presented above were marked with statistically suitable characteristics in the plans for checking linearity (squares, cubics, squares + cubes, logarithms), heteroskedasticity (White, Breusch-Pagan), normal distribution of residuals, and structural stability of the data sample (See O. Stasiv et al. 2023)).

To evaluate the analytical achievement indicators generated by OLD, the study used "standard" highly professional measures, in particular for the field of "Econometrics", built into the GNU Regression, Econometrics and Time-Series Library: 1) standard sampling error (SSS); 2) Fisher’s coefficient (Φ); 3) adjusted coefficient of determination (ACD); 4) mean absolute %-error (E_{MA}); 5) logarithm of the likelihood (LL), Akaike, Bayesian, Hennan-Quinn information measures – AIM, BIM, HQM; 6) Theil U decomposition criterion; 7) AC-criterion; 8) MC-criterion - fractions of variances (ϕ), variance-inflation factors (ψ), predestination numbers (η) (similar to the previous study by O. Stasiv et al. 2023). All generated Eqs. described $\Phi \alpha \alpha \alpha \leq 0.001–0.01$ (Table 4). Least satisfactory SS, ACD, E_{MA} were inherent to Eqs. (13a-2), (18-4); most suitable SS, ACD, E_{MA} – in (10a-1)-(12-1), (14-2), (16-2), (20-4); intermediate ACD, SSE, E_{MA} – in Eqs. (13b-2), (15a-2), (15b-2), (17-3), (19-4).
Mostly, clear correspondences between SSE, ACD, E_{max}, on the one hand and IL, and AIM, BIM, HQM – on the other hand, detected for the groups of Eqs. (10a-1)-(12-1), (14-2), (16-2), (20-4), and for Eqs. (17-3), (19-4) (Table 4; comparison with O. Stasiv et al. (2023)). Low IL (among other things $IL < 0$), significant AIM, BIM, HQM (among other things > 0) confirm the low probability of analytical forms of predestination M sign N, or N trait L in Eqs. (13a-2), (18-4), M by Vrb. N or R in Eqs. (13b-2), (15a-2), (15b-2).

Value of Theil ($U1$) inequality coefficients for all subordinates were < 1 ($0.00099-0.02596$) and > 0, certifying their total forecast accuracy and quality (Fang et al., 2020). Other relevant measures of Theil U decomposition of the mean error MSE – the disturbance proportion (UD) is a result from source of the random error), the regression proportion and the bias proportion (UR, UM, respectfully; they are the result from sources of systemic errors in model parameters) had optimal values for each OLD, i.e., 1, 0, 0, respectively, thus confirming the totals in the previous sentence (Ferrentino & Vota, 2020).

None of the AC were found in the list of generated Eqs. However, unlike the previous notice (Stasiv et al., 2023) Eqs. (10a-1), (10b-1), (12-1) – (15b-2), (17-3), (19-4), (20-4) had unknown zones for AC (Table 5). It is worth noting that the Vrb. M, N, L, R, B are estimates of ecological and physiological processes in winter wheat crops. Anumber of researchers, in particular J. Martínez-Minaya et al. (2018), G. Gaspard et al. (2019), formulated the idea that the structure of the development of ecological or biological processes is developed under the conditions of interaction of “spatial” and “temporal” abiotic and biotic factors, causing spatial autocorrelation (SAC), rSAC (residual SAC), and temporal correlation. In addition, the researchers emphasise that the potential source of AC, rSAC, may be some features that arise in the course of obtaining and processing environmental data, for example, failure to take into account of the contagious biotic processes (growth, mortality, etc.), scales and distances, inability to choose the appropriate localised and Vrb. with SAC (omitted Vrb), sample design, hypotheses and methodological approaches, etc. The authors of this paper are inclined to assume that the uncertain zones for AC in the above-mentioned OLD (this paper) are at least partly conditioned by the failure to take into account the not yet established aspects of (inter-) coordination between ULB growth traits, and/or omit Vrb. with SAC, sample design, hypotheses and methodological approaches, etc.

Table 4. Key analytics dashboard of the generated OLD (of the individual and by category)

<table>
<thead>
<tr>
<th># and category of OLD</th>
<th>General criteria of statistical reliability</th>
<th>IL</th>
<th>Highly specific information measures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E_{max}, $Φ$, ACD, SSE, IL, AIM, BIM, HQM</td>
<td></td>
<td>Mean absolute % error, Fisher’s statistics, adjusted coefficient of determination, standard sampling error, logarithm of the likelihood, Akaike, Bayesian, Hennan-Quinn information measures, respectively</td>
</tr>
<tr>
<td>Category 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10a-1</td>
<td>0.612</td>
<td>0.9777</td>
<td>0.061</td>
</tr>
<tr>
<td>10b-1</td>
<td>0.652</td>
<td>0.9780</td>
<td>0.060</td>
</tr>
<tr>
<td>11-1</td>
<td>0.637</td>
<td>0.9745</td>
<td>0.065</td>
</tr>
<tr>
<td>12-1</td>
<td>0.388</td>
<td>0.9834</td>
<td>0.059</td>
</tr>
<tr>
<td>Category 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13a-2</td>
<td>3.492</td>
<td>0.5813</td>
<td>0.263</td>
</tr>
<tr>
<td>13b-2</td>
<td>2.125</td>
<td>0.7250</td>
<td>0.213</td>
</tr>
<tr>
<td>14-2</td>
<td>1.008</td>
<td>0.9550</td>
<td>0.086</td>
</tr>
<tr>
<td>15a-2</td>
<td>3.154</td>
<td>0.6549</td>
<td>0.239</td>
</tr>
<tr>
<td>15b-2</td>
<td>2.212</td>
<td>0.7425</td>
<td>0.207</td>
</tr>
<tr>
<td>16-2</td>
<td>1.637</td>
<td>0.9566</td>
<td>0.147</td>
</tr>
<tr>
<td>Category 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-3</td>
<td>0.164</td>
<td>0.7004</td>
<td>0.047</td>
</tr>
<tr>
<td>Category 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-4</td>
<td>4.106</td>
<td>18.946</td>
<td>0.5993</td>
</tr>
<tr>
<td>19-4</td>
<td>0.155</td>
<td>14.245</td>
<td>0.680</td>
</tr>
<tr>
<td>20-4</td>
<td>3.521</td>
<td>35.7598</td>
<td>0.9834</td>
</tr>
</tbody>
</table>

Note: $α$ – $α < 0.001$, $α < 0.01$; E_{max}, $Φ$, ACD, SSE, IL, AIM, BIM, HQM – mean absolute %-error, Fisher’s statistics, adjusted coefficient of determination, standard sampling error, logarithm of the likelihood, Akaike, Bayesian, Hennan-Quinn information measures, respectively.

Source: developed by the authors based on O. Stasiv et al. (2023)
Similarly, to the report by O. Stasiv et al. (2023), in multi-step polynomial and single-step multi-step multi-step Eqs. generated in this paper, ((10a-1) – (12-1), (13B-2), (14-2), (15b-2) – (17-3), (19-4), (20-4)), a significant MC in terms of ϕ, ν, η was observed (Das, 2019; Kim, 2019) (Table 5). According to A. Kalnins (2018), MC can often be driven by a common cause with IV (a common source of measurement error or a statistically robust unobserved Vrb.) and a significant but idiosyncratic term. This phenomenon can cause type 1 errors (false positive results) – an overestimation of the β of the OLD, their statistical validity, and a change in the sign to the opposite. Therefore, MC, like AC or uncertainty zones for AC, can be caused by the influence of the omitted reasons on the behaviour of IV; however, the nature of such reasons and their effect on IV is different in each case.

Additionally, attention should be paid to the fact that Eqs. (10a-1), (12-1), (14-2), (16-2) for predestination M by the IV N, L, R, B, and also R, B by the IV L (OLD (19-4), (20-4)) empirically and stochastically satisfactorily describe the conditionality and subordination between the evaluated ecological and physiological characteristics of winter wheat under the studied agrotechnical influences. Naturally, the presence of omitted Vrb. that affect such coherence is an objective condition for the existence of the latter. Eqs. (17-3), which characterises predestination of R by the N unfortunately, cannot be considered properly due to the excessive complexity of its interpretations.

DISCUSSION

Decrease to positive values or immutability of NAR_{ULB}, RGR_{ULB} in research variants vs. C.0, 1.1, 2.1, at least to some extent, were conditioned by the balance between (i) increase or stabilisation of DM, DMI, L, R, B, and also R, B by the IV L (OLD (19-4), (20-4)) empirically and stochastically satisfactorily describe the conditionality and subordination between the evaluated ecological and physiological characteristics of winter wheat under the studied agrotechnical influences. Naturally, the presence of omitted Vrb. that affect such coherence is an objective condition for the existence of the latter. Eqs. (17-3), which characterises predestination of R by the N unfortunately, cannot be considered properly due to the excessive complexity of its interpretations.

Table 5. The most important benchmarks of the AC and MC for the OLD (of the individual and by category)

<table>
<thead>
<tr>
<th># and category of OLD</th>
<th>AC-criteria</th>
<th>MC-criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D-criterion</td>
<td>ρ > 0 or ρ < 0</td>
</tr>
<tr>
<td>Category 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10a-1</td>
<td>3.03861</td>
<td>None</td>
</tr>
<tr>
<td>10b-1</td>
<td>2.86054</td>
<td>None</td>
</tr>
<tr>
<td>11-1</td>
<td>1.83745</td>
<td>None</td>
</tr>
<tr>
<td>12-1</td>
<td>2.85631</td>
<td>None</td>
</tr>
<tr>
<td>Category 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13a-2</td>
<td>1.10258</td>
<td>None</td>
</tr>
<tr>
<td>13b-2</td>
<td>1.13358</td>
<td>None</td>
</tr>
<tr>
<td>14-2</td>
<td>1.47929</td>
<td>None</td>
</tr>
<tr>
<td>15a-2</td>
<td>1.12215</td>
<td>None</td>
</tr>
<tr>
<td>16-2</td>
<td>1.83822</td>
<td>None</td>
</tr>
<tr>
<td>Category 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-3</td>
<td>1.81374</td>
<td>None</td>
</tr>
<tr>
<td>Category 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-4</td>
<td>1.66049</td>
<td>None</td>
</tr>
<tr>
<td>19-4</td>
<td>1.40682</td>
<td>None</td>
</tr>
</tbody>
</table>

Note: ρ – AC-coefficient; ϕ, ν, η – zones of uncertainty AC at intervals $dL \times dU$, $4-dU < D < 4-dL$, respectively; n, ϕ, ν – predetermination numbers, fractions of variances, variance-inflation coefficients, respectively; e, d – intervals for N (max) and ϕ in the presence of $N > 10 \times N > 30$; c – MC-criteria are missing because Eq. contains only one variable; f – ν is the same in the case of the 1st and 2nd Vrb.

Source: Developed by the authors based on O. Stasiv et al. (2023)
the intensity of photosynthesis (Rezvani-Moghadam, 2020) (tubing – flowering; early leaf ageing), (ii) a subsequent decrease in photosynthetic activity, typical increases in the rate of respiration (Rezvani-Moghadam, 2020), outflow of photo assimilates and remobilisation of ULB resources, accompanied by a decrease in \(\Delta M_{\text{DM}} \), LDMC, \(\Delta \text{AI} \) (earing – milky ripeness). The changes in \(\Delta M_{\text{DM}} \), \(\Delta \text{AI} \) specified in (ii) can lead to RGR, NAR, \(\Delta RGR \) ≤ 0 (Lamont et al., 2023). Since, according to J. Gu et al. (2018), negative leaf growth is accompanied by a decrease in plant RGR, then winter wheat with RGR < 0 reached full ripeness the fastest.

Simultaneously, LAD, RGR, BMD changed reciprocally, relative to NAR, RGR. Such trade-offs can be scaled to the level of plants, leaf cover, and mediate the development of optimal eco-resistant results of the winter wheat production process.

A. Bilal et al. (2019) demonstrated that for TDM seed Bt. cotton yield \(tr = 0.94, \alpha < 0.05 \). Therefore, the components of bioproductivity can be significantly determined by GI – NAR, LAD, RGR, BMD. For example, after exposure to biological agrotechnical factors on alfalfa, both NAR, RGR, and CGR grew, parts of which are components of biological products (Khirkhah et al. 2019).

Confirming this, H. Tiwari et al. (2023) documented unidirectional increase of RGR, NAR, CGR, bio-productivity components, wheat harvest index (HI), whereas P. Kumar and S.K. Brar (2021) cited studies in which there were simultaneous increases in LAD, NAR, CGR, and HI. Simultaneous increases in LAI, CGR, and yield structure indicators in wheat (Khan et al., 2023), LAI, NAR, dry matter volumes and economic productivity of rice (Islam et al. 2019). It is well known that FLB (“functional leaves”) is important for providing 45-58% of wheat’s photosynthetic activity at the grain completion stage (Liu et al., 2019), the contribution of more than 80% of the top three leaves of cereals to photosynthesis of the entire plant at the grain maturation stages (Du et al. 2019). However, the authors of this paper did not find scientific reports with a comprehensive analysis of the (inter-) conditions of the classical interval GI of the upper leaves (in particular, FLB, PFLB) and a bioproductivity of winter wheat (Triticum aestivum L.) due to the influence of agrotechnical and technological factors on it.

This paper documents the presence of stochastic essential 2D GDM – LAD co-subordination of, low-expressive 2D GDM-BMD co-ordinations, and the absence of statistically clear subordination of GDM-NAR, GDM-BMD. The presentation of the determinants of the GDM growth trait ULB, and then the individual GI analytical forms of OLD among themselves, allowed a deeper and more diverse understanding of the complex principles of development of the final bioproductivity of winter wheat (primarily in terms of \(+ \Delta M_{\text{ULB}} \), \(+ \Delta \text{AI}_{\text{ULB}} \) under “model” conditions of BFS. Among the generated OLD that characterise the development of GDM depending on GI of the ULB, Eqs. (10a-1)-(12-1), (14-2), (16-2) is completely statistically satisfied. It follows from them that not \(M \), but log \(M \) are non-linearly determined by 2-regressor conjunctions \(N, L \) or \(R, B \) ((10a-1), (10b-1)), whereas MLP ML function \(M \) – combinations of \(L \) and \(R \) (12-1) (multinomials). In (10a-1), (10b-1) \log M is positively coordinated with \(L \), but negative – with \(L' \), \(N \), \(N' \), \(L \), at the same time, in (12-1) the MLP ML function \(M \) is negatively predetermined, but positive – \(L' \), \(R \). In (11-1), \log M is effectively coordinat-

Considering TAE category 3 (“INTRODUCTION”), the basis of the relevant ideas published by S. Tripathi et al., (2018), it is clear that (i) light intensity, (ii) reach, capture of alimentary resources from the soil and/or atmosphere, (iii) their interactive effects affect RGR, and each of the growth components: an increase in (ii) causes an increase in LAR by increasing LMF, RMF (root mass fraction), a decrease in LMA; an increase in (i) causes an increase in NAR, LMA, and a decrease in LAR; multivariate studies are important for understanding (iii) (Tripathi et al., 2018). Typically, NAR variations lead to RGR changes if NAR does not have a negative covariance with LMF or SLA (Gómez-Fernández et al., 2022). In accordance with the presented ideas, plant biomass allocation (BA) takes place in line with the “theory of optimal biomass allocation”: for optimal growth, plants will distribute biomass to the organ that captures the most growth-limiting resources. Differences in ontogenetic drifts of GI and BA also lead to trade-offs, in particular between NAR and LAI, or RGR, and investment in structural components, tissue renewal, and self-shading (Islam et al., 2019). The trade-offs (NAR, RGR) – (LAD, BMD) found in this paper, statistically reliable negative values \(tr \) for LAD, NAR, RGR, BMD resemble the constructs of plant GI ratios outlined in this paragraph; significant \(tr \), \(pr \) for RGR, NAR, allow predicting RGR = NAR (as confirmation – TAE category 4 (“INTRODUCTION”)). Through nonlinear coordination of the ML function \(R \) with log \(N' \) (Eq. (17-3), interpretive suboptimality) a likely alternative would be RGR = SLA or the involvement of the nearest morphological Vrb. – LAD; this is consistent with significant positive and negative values \(tr \) for LAD-BMD, LAD-NAR, LAD-RGR, statistically reliable positive \(pr \) for LAD-BMD; mathematically SLA = LAI (LAD component) and SLA = 1/LDM (Bosi et al. 2020). Therefore, non-hierarchical polynomial OLD was generated between ML functions \(N', R, B \) and L, among which the second (19-4) and third (20-4) are statistically satisfied; these Eqs. are less difficult than (17-3).

According to K. Kikuzawa et al. (2018), and according to TAE category 3, the larger the RGR, the smaller the LMA and is directly proportional to it by LL. According to this, leaf economic spectrum (LES) is considered: long-lived plant species with structurally valuable leaves (high LL, LMA), low instantaneous net photosynthetic
rate Aarea, NAR – fast-growing species with short-lived leaves, high RGR, Aarea (NAR), low LL, LMA. Both in the case of TAE categories 1, 2 and in terms of functional ecology, the increase in carbon over plant life (net production) is proportional to the products of (i) functional LL or biomass duration, respectively, and (ii) of the average instantaneous rate of photosynthesis normalised by weight. This implies a close or identical essence of LAD, BMD, and LL. The influence of LAI on LL was previously noted by I.C. Dodd and E.D. Elphinstone (2021). Consequently, LAD, BMD play a central role in classical plant growth analysis, whereas LAD\textsubscript{ULB}, BMD\textsubscript{ULB} – significantly determine the remaining signs of ULB growth and probably GDM. This opinion corresponds to the correlation matrices presented in this paper (the value and statistical reliability of mutual agreements between L, B). The contribution of L is significant and statistically reliable in the development of log \(M \) in (10a-1), (10b-1), (12-1), (14-2), ML functions \(R \) (19-4), in deployment \(B \) (20-4); it is important that log \(M \) – log \(B \) (11-1).

Since OLD log \(M \) from \(N \) or \(R \) in (13A-2), (13B-2), (15A-2), (15B-2) are characterised by unsatisfactory \(L \), and AIM, BIM, HQM, then GDM should not depend on NAR\textsubscript{ULB} or RGR\textsubscript{ULB}, either depend on them weakly, or non-linearly. This corresponds to the basic concepts proposed by J.L. Araus et al. (2021): the result of the production process of agricultural crops is not determined or insufficiently, or is not directly determined by the efficiency of leaf photosynthesis, but source-sink relations, RUE, architecture and duration of the (green) leaf cover play a crucial role in its development. The latter type of traits will be determined by the functional LL, LAD size of the culture population. This makes it fundamentally possible to scale to the level of leaf cover of LAD\textsubscript{ULB}, BMD\textsubscript{ULB} – the most important GI of the ULB for GDM development. Thus, in the “successful” OLD (10A-1) ~ (12-1), except \(L \) or \(B \), also present \(N \) or \(R \). Since NAR\textsubscript{ULB}, RGR\textsubscript{ULB} characterise the average rate of BA in the area or ULB biomass, then it is reasonable to assume that GDM can be caused by BA, both at the level of ULB and at the level of parts of the whole plant, in particular the structures of reproductive organs.

Thus, the statistically reliable (inter-) dependence of winter wheat GDM (full maturity) on LAD\textsubscript{ULB} and BM-\(D \textsubscript{ULB} \) (tubing – milky ripeness), i.e., on ULB growth traits that can be scaled to the level of crop leaf cover, is fundamentally explainable. These subordinates do not contradict, but rather correspond to, (mutually) coordinated ULB-growth terms, similar to multipliers in TAE category 3 (“INTRODUCTION”), with the LAD\textsubscript{ULB} trait.

The authors of this study consider a middle way between the approaches proposed by M. Weemstra et al. (2023) to consider plant functional traits (PFT) of the whole plant (underground + aboveground parts) and, for example, the findings of N. An et al. (2021), which attest to the influence of agroclimatic conditions on resource capture and leaf construction costs (SLA, LMA, LDMC, LNC), and, in particular, the findings of J.L. Araus et al. (2021) in terms of prioritisation of plant traits that scale to leaf cover, crown, and seeding. It is clear that in subsequent studies, it is advisable to search for similar allometric Eqs. (10A-1)-(16-2) GDM predeterminations not only by the GI of the ULB, but also by features similar to BA (DM investment in the ULB – LMA\textsubscript{ULB} area, area reinvestment in DM of ULB-SLA\textsubscript{ULB}, average leaf area, leaf DM – dimensions of source), of the reproductive allocation (RA, see G. Li et al. (2019); average volumes of ULB biomass outflow on leaf DM, or GDM, or GDM/leaf DM), among other things, for the purpose of “embedding” the GI of classical growth analysis of even ULB itself in broader, but still compact systems of causal relationships woven into the processes of formation of potential, relevant bio-, eco-important and economically valuable features under various agrotechnical and technological influences. The development of appropriate networks and/ or groups of plant traits can help solve a number of inconsistencies in the scientific area.

CONCLUSIONS

The potential possibilities and significance of empirical and statistical (mutually) predeterminations of the levels of an agroecologically important component of the production process of winter wheat (grain dry mass, single-character designation – \(M \)) potentially scalable integral growth traits of the upper leaves blades (ULB), which characterise the development power of their photosynthetic apparatus – leaf area duration or biomass duration (\(L, B \), respectively), under the conditions of “model” biological and agrotechnical influences (biologised fertilisation systems – BFS). For the development of \(M \), the consolidated additive effects of one of the above-mentioned ULB growth traits and non-scaled features of the average ULB growth rate (net assimilation rate, relative growth rate – \(N, R \)), for example, combinations \(N \) and \(L \), or \(R \) and \(B \), or \(L \) and \(R \). Statistically reliable unidirectional changes of \(L, B \), on the one hand, and \(M \) – on the other hand, and simultaneous inversely directed variations \(N, R \), found obvious trade-offs (in terms of reciprocity of changes in the indices under consideration) between potentially scalable and non-scalable ULB growth traits (\(L, B \) vs. \(N, R \), respectively).

In passing with the expected statistically reliable empirical (mutually) consistency between \(R \) and \(N \) in the direction of well-established regularities of functional ecology and classical analysis of plant growth, the analytical form of predestination of the first of these features of the second was too complex for semantic and abstract-logical interpretations. Analytical forms of predetermination of criteria can be quite appropriate partial alternatives to such subordination between the specified ULB growth traits of winter wheat \(R \) or \(B \) sign \(L \). However, \(N \), most likely, did not...
References

Стохастичні зумовленості складника біопродуктивності рисами росту пластинок верхніх листків пшениці озимої

Ангеліна Дубицька
Кандидат сільськогосподарських наук, провідний науковий співробітник
Інститут сільського господарства Карпатського регіону Національної Академії Аграрних Наук
81115, вул. Грушевського, 5, с. Оброшине, Україна
https://orcid.org/0000-0002-5685-0237

Оксана Качмар
Кандидат біологічних наук, старший науковий співробітник
Інститут сільського господарства Карпатського регіону Національної Академії Аграрних Наук
81115, вул. Грушевського, 5, с. Оброшине, Україна
https://orcid.org/0000-0002-8293-4119

Олександр Дубицький
Кандидат сільськогосподарських наук, старший науковий співробітник
Інститут сільського господарства Карпатського регіону Національної Академії Аграрних Наук
81115, вул. Грушевського, 5, с. Оброшине, Україна
https://orcid.org/0000-0002-8293-4119

Оксана Вавринович
Кандидат сільськогосподарських наук, старший науковий співробітник
Інститут сільського господарства Карпатського регіону Національної Академії Аграрних Наук
81115, вул. Грушевського, 5, с. Оброшине, Україна
https://orcid.org/0000-0003-3466-1432

Зиновій Котик
Кандидат технічних наук, доцент кафедри
Національний університет «Львівська політехніка»
79013, вул. Бандери, 12, м. Львів, Україна
https://orcid.org/0000-0002-7725-0791

Анотація. Відносна та абсолютна важливість низки ознак, зокрема, агрофізіологічних, морфофункціональних, на рівні окремих органів і частин цілісної рослини та/або посіву для розвитку особливостей біологічних ознак та інших агроекологічно значущих складових продукційного процесу рослинництва, обговорюється в наукових працях вже тривалий час. Метою роботи був пошук агроекологічно значущих ознак росту верхніх листкових пластинок (GDM), які можуть емпірично та потенційно визначати розвиток сухої маси зерна (ULB) пшениці озимої за «модельних» умов біологічних агroteхнічних впливів, позначеннях як системи біологічного удобрения. Методи дослідження: методичні підходи польового досліду, гравіметричний, конвективного сушіння та стохастичні методи. Розвиток GDM значною мірою визначався потенційно масштабованими інтегральними ростовими ознаками ULB – тривалістю листкової поверхні, тривалістю біомаси (LAD_{ULB}, BMD_{ULB}, відповідно) або їх комбінаціями з потенційно немасштабованими характеристиками середньої швидкості росту ULB – чистою асиміляційною швидкістю, відносною швидкістю росту (NAR_{ULB}, RGR_{ULB}, відповідно). Також дуже ймовірно, що LAD_{ULB} може відігравати центральну роль у розвитку RGR_{ULB} або BMD_{ULB} (але не NAR_{ULB}). Координація RGRULB з NAR_{ULB} не була виключена, хоча вона була надто складною. Побудова таких і подібних досліджень у руслі вичерпного пояснення послідовних системно-механічних зумовлень продукційного процесу з ознаками зростання ULB за різних агroteхнічних і біологічних впливів сприятиме вдосконаленню дискретних і математичних імітаційних конструкцій, здатних характеризувати та інтегрувати диференційовані впливи рослинних компонентів на фотосинтез листкового покриву, крони і, зрештою, на процеси розвитку складових кінцевого біологічного та економічного врожаю озимої пшениці

Ключові слова: ознаки або особливості росту верхніх листкових пластинок; тривалість періоду формування листкової поверхні та біомаси; чиста асиміляція та відносна швидкість росту; ознака пшениці; «модельні» біологічно покращені агрономічні умови – біологічно покращені системи удобрения